C~PLX. SOC. RPL'., 1989, **18,** 285-3 16

Heterogeneous Redox Catalysts for Oxygen and Chlorine Evolution

By Andrew Mills DEPARTMENT OF CHEMISTRY. UNIVERSITY COLLEGE OF SWANSEA. SINGLETON PARK, SWANSEA,SAZ 8PP

1 Introduction

The general redox reaction

tion

$$
n_2Ox_1 + n_1Red_2 \longrightarrow n_2Red_1 + n_1Ox_2
$$
 (1)

comprising the two redox couples

$$
Ox_1 + n_1 e^- \longrightarrow \text{Red}_1
$$
 (2)

and

$$
\text{Red}_2 \xrightarrow{\longrightarrow} \text{Ox}_2 + n_2 e^{-}
$$
 (3)

is thermodynamically feasible, provided

$$
\Delta E = E_1 - E_2 > 0 \text{ V} \tag{4}
$$

where E_1 and E_2 are the equilibrium reduction potentials of redox couples 1 and 2, respectively. However, there exist many such feasible redox reactions which do not proceed at a measurable rate owing to their high activation energy barriers. An excellent example of this is provided by solutions of ceric sulphate, or potassium permanganate, made up in H_2SO_4 (typically 0.5 mol dm⁻³), which are common in most laboratories and often used in redox titrations. These solutions are extremely stable and can last for years, however, in terms of thermodynamics they are unstable, since both oxidants have redox potentials greater than that of the O_2/H_2O couple and, therefore, are capable of oxidizing water to O_2 . For both Ce^{IV} and $MnO₄$ ions the high kinetic stability of their solutions is due to a large activation energy barrier which in turn arises because the homogeneous oxidation of water requires four consecutive electron transfer steps involving the reactive and high energy species, $OH₁, H₂O₂$, and $O₂$ as intermediates.

A system in which two or more redox couples are present together but are not in equilibrium, *i.e.* $\Delta E \neq 0$ V, is often called a 'polyelectrode'.¹ A redox catalyst is a substance which is able to lower the activation barrier associated with a kinetically stable polyelectrode, such as the Ce^{IV}/H_2O system and, in so doing, increases the rate of electron transfer to a measurable value. Although it is

¹ M. Spiro, *Chem. Soc. Rev.*, 1986, **15**, 141.

Figure 1 Schematic illustration of the usual role of a heterogeneous redox catalyst as an *electron conductor in mediuting the general reaction:*

 $n_2Ox_1 + n_1Red_2 \longrightarrow n_2Red_1 + n_1Ox_2$

possible to have both homogeneous and heterogeneous redox catalysts for a particular reaction, it is examples of the latter which dominate the literature. The work of Spiro and his collaborators in this area of heterogeneous redox catalysis has advanced the subject significantly.¹ In particular, through an examination of over 70 different redox systems, they have demonstrated that the role of the redox catalyst is often simply that of a conductor of electrons, $\frac{2}{3}$ as illustrated in Figure 1 for the general redox reaction 1. From this electrochemical approach to redox catalysis, the kinetics of catalysis of reaction 1 can be predicted from the current-voltage curves of the two contributing couples, *i.e.* reactions 2 and 3, and the appropriate electrochemical equations, *provided* the two couples act independently of one another. This assumption is often referred to as the Wagner-Traud additivity principle after its early exponents³ and has been extensively and positively tested for over the years, with the discovery of few exceptions.^{1,2}

It is appropriate at this point to introduce the concept of electrochemical reversibility. For a given electrode the more electrochemically reversible a couple is the faster the exchange of electrons between its oxidized and reduced forms occurs at the electrode. **A** measure of this electron exchange rate is provided by the exchange current density, i_0 and, typically,² for a reversible reaction i_0 is A cm⁻², and for an irreversible reaction i_0 is $\leq 10^{-10}$ A cm⁻². From the electrochemical model and the concept of electrochemical reversibility it is possible to identify three different cases for the redox catalysis of reaction 1, and these are described in Table 1.

M. Spiro and **A.** B. Ravno, *J. Clicmi. Soc.,* 1965, 78.

C. Wagner and W. Truud. *Z. Elckiroc~licwi..* 1938, **44,** 391

Table 1 Three cases for redox catalysis for the reaction

 $n_2Ox_1 + n_1Red_2 \longrightarrow n_2Red_1 + n_1Ox_2$

2 Background History

As the title suggests this review is concerned with heterogeneous redox catalysts which are able to mediate the oxidation of water to O_2 , or chloride to Cl_2 , by oxidants with redox potentials (E_1) which satisfy equation 4, where E_2 is the the equilibrium potential of the O_2/H_2O or $Cl_2/C1^-$ redox couple, respectively. Interest in such materials has primarily arisen from work into photochemical systems capable of efficiently collecting and storing solar energy in the form of a chemical fuel, which gained its greatest impetus, in terms of funding, following the oil crisis of the mid-seventies.^{4,5} A major approach in this area of research is the development of an artificial photosystem capable of splitting water into hydrogen and oxygen, *i.e.*

$$
2H_2O \xrightarrow{\text{photochemical system}} 2H_2 + O_2
$$
 (5)

More recently this research⁵ has extended to the development of photochemical systems capable of splitting HCl into hydrogen and chlorine, *i.e.*

$$
2HCl \xrightarrow{\text{photochemical system}} H_2 + Cl_2 \tag{6}
$$

In both cases, with the absorption of a photon of light, the photochemical system should generate a strong oxidant, capable of oxidizing water to O_2 (or Cl⁻ to $Cl₂$) and a strong reducing agent, capable of reducing water to $H₂$. Thus, essential to the efficient operation of any one of these photochemical systems is the incorporation of redox catalysts for water (or Cl^-) oxidation and water

^{&#}x27; **A.** Mills, *Sci. Tech. Rrr.* **(C** *~ir. Wdrs).* 1988, **4.** 39.

^{&#}x27; 'Energy Resources Through Photochemistry and Catalysis.' ed. M. **Griitzel,** Academic Press, New York. 1983.

reduction. These catalysts should be stable, specific, and fast-acting towards their respective redox reactions.

As indicated above, most of the research in this area has been concerned with the photosplitting of water, *i.e.* reaction *5.* **A** great deal of progress has been made in the area of redox catalysts for water reduction, *i.e.* H_2 catalysts, and there are now materials such as colloidal Pt which are able to act in the μ s timescale.⁶ In contrast, progress in the area of water oxidation catalysts $(O₂)$ catalysts) has been slow, since most of the materials tested appear to be either inactive or themselves undergo anodic corrosion when subjected to the strong oxidizing conditions necessary to oxidize water to O_2 . Table 2 provides a list of the different materials which have been reported as active O_2 catalysts and the oxidizing agents which have been used to test them.⁷⁻⁵⁰ In contrast to the

⁶ A. Demortier, M. De. Backer, and G. Lepoute, *Nour. J. Chini.*, 1983, 7, 421 and references therein.

J. Kiwi and **M.** Gritzel. *Chernio,* 1976, **33,** 289.

J. Kiwi. *lsr. J. Chcwi.,* 1979, **18.** 369.

situation with O_2 catalysts, there have been relatively few reports of Cl_2 catalysts and in most cases Ce^{IV} ions in 0.5 mol dm⁻³ H_2SO_4 were used as the oxidant.^{51,52}

The choice of oxidizing agent for testing a new material for possible O_2 , or Cl_2 , catalytic activity is important and Table 3 lists some which have been used for this purpose.⁵³ In Table 3 we have calculated for each oxidant the value of ΔE for the oxidation of H₂O to O₂, $\Delta E(O_2)$, and Cl⁻ to Cl₂, $\Delta E(C_2)$. An oxidant will be thermodynamically 'stable' to water (or Cl⁻) if $\Delta E(O_2)$ [or $\Delta E(Cl_2)$] is $-ve$. Usually, under ambient conditions and in the presence of water alone (or with

- ' K. Kalymasundaram and M. Gratzel, *Angew. C/iem., Int. Ed. Engl..* 1979, 18. 701.
- ¹⁰ J. Kiwi, M. Grätzel, and G. Blondeel, *J. Chem. Soc., Dalton Trans.*, 1983, 2215.
- I I A. Mills and M. L. Zeeman, *J. Clicw. Soc., Cheni. Commwi.,* 1981. 948.
- **l2** A. Mills. *J. CIiem. Soc., Drrlton Trrrn.~,* 1982. 1213.
- **l3** A. Mills. C Lawrence, and R. Enos, *J. Chrni. So(.., Cheni. Commun.,* 1984, 1436.
- ¹⁴ A. Mills, S. Giddings, and I. Patel, *J. Chem. Soc., Faraday Trans. 1*, 1987, 83, 2317.
- ¹⁵ A. Mills, S. Giddings, I. Patel, and C. Lawrence, *J. Chem. Soc., Faraday Trans. 1*, 1987, 83, 2331.
- ¹⁶ A. Mills and S. Giddings, *Inorg. Chim. Acta*. 1989, 1**58**, 49.
- ¹⁷ A. Mills, S. Giddings, N. McMurray. and G. Williams. *Inorg. Chim. Acta*, 1989, 159, 7.
- ¹⁸ A. Mills and N. McMurray, *J. Chem. Soc., Faraday Trans. 1*, accepted for publication.
- ¹⁹ A. Mills and N. McMurray, *J. Chem. Soc., Faraday Trans. 1*, accepted for publication.
- ²⁰ G. Blondeel, A. Harriman, G. Porter, D. Urwin. and J. Kiwi. *J. Phys. Chem.*, 1983, 87, 2629.
²¹ A. Mills and N. McMurray, *J. Chem. Soc., Faraday Trans. 1*, 1988, 84, 379.
-
- **²¹**A. Mills and N. McMurray. *J. Clirni. Soc., Fiirdq Trcin.~. I,* 1988. 84. 379. '' C. Minero. E. Lorenzi. E. Pramauro. and E. Pelizzetti. *Innrg. Chini. Acta.* 1984.91, 301.
- ²³ A. Harriman, M.-C. Richoux, P. A. Christensen, S. Mosseri, and P. Neta, *J. Chem. Soc., Faraday Trms.* 1. 1987. **83,** 3001.
- " J.-P. Collin. J.-M. Lehn. and R. Zeissel. *Your J. Chini.,* 1982.6. 405.
- *²⁵*J.-M. Lehn. J.-P. Sauvage. and R. Ziessel, *Nout.. J. Chin?.,* 1979. 3.423.
- *2h* V. Ya. Shafirovich and V. V. Strelets. *Nour. J. C/iim..* 1982, 6. 183. -
- *7-* A. Harriman. G. Porter. and P. Walters, *J. Chm. Soc.. Furcrdlrj. Trtrm. 2,* 1981. 77. 2373.
- ²⁸ K. Kalyanasundaram. O. Mićić. E. Pramauro. and M. Grätzel. *Helv. Chim. Acta*, 1979. **62**, 2432.
- ²⁹ J.-M. Lehn, J. P. Sauvage, and R. Ziessel, *Nouv. J. Chim.*, 1980, **78**, 339.
- **.4.** Juris and L. Moggi. *Int. J. Solw Ener'qj..* 1983. 1, 273.
- j1 K. Kaljanasundaram and M. Gratzel. *Angrit'. Cheni., Int. Ed. EngI.,* 1979. 18, 701.
-
- *32* M. Kaneko, N. Awaya, and A. Yamada, *Chem. Lett.*. 1982, 17, 619. ³³ M. Neumann-Spallart. *J. Chem. Soc.. Faraday Trans. 1*, 1985, **81**, 601. ³⁴ J. Kiwi, *J. Chem. Soc.. Faraday Trans.* 2, 1982, **78**, 339. 33 M. Neumann-Spallart, *J. Chem. Soc., Faraday Trans. 1*, 1985, 81, 601.
-
- ³⁵ E. Pramauro and E. Pelizzetti, *Inorg. Chim. Acta*, 1980, **45**, L131.
- *3h* D. Duonghong, W. Erbs. L. Shuben. and M. Griitzel, *Cheni. Phjx Let(..* 1983, 266.
- H. Nijs. M. **I.** Cruz. J. J. Fripiat, and H. Van Damme. *Notii,. J. Chin?.,* 1982, 6, 551. *3'*
- *3'* D. H. M. W. Thewissen. M. Eeuwhort-Reinten, K. Timmer. **A.** H. A. Tinnemans. and A. Mackor, *J.* R. *Soc. Neth. Chem. Soc., 1982, 101/2, 79.*
- R. Humphry-Baker. J. Lilie, and M. Gratzel, *J. Am. Clieni.* **Soc,.,** 1982. 104, 422.
- P. Baltzer, R. S. Davidson. A. *C.* Tseung, M. Gratzel, and J. Kiwi, *J. Am. Chem. Soc.,* 1984, **106,** 1504. 40
- J. Kiwi and M. Gratzel, *Atigru.. Chctl?.. In/. Ed. Engl.,* 1978, **17.** 860.
- ⁴² A. Harriman, J. M. Thomas, and G. R. Millward, *New J. Chem.*, 1987, 11, 757.
- A. Harriman, J. M. Thomas, and O. K. Millward, *New J. Chem.*
⁴³ Y. Okuno, O. Yonemitsu, and Y. Chiba, *Chem. Lett.*, 1983, 815.
- 44 P. A. Christensen, A. Harriman, P. Neta, and M.-C. Richoux, *J. Chem. Soc., Faraday Trans. 1*, 1985, 81, 2461.
- " **41.** Kaneko, N. Takabayshi, and A. Yamada, *Chem. Lett.,* 1982. 1647.
- '' M. Kaneko, N. Takabayshi. Y. Yamaguchi, and **A.** Yamada. *Bull. Chem.* **SOC.** *Jpn..* 1984.57, 156.
- R. Ramaraj. A. Kira. and M. Kaneko, *Angcw. Clirm., In!. Ed. Engl.,* 1986, *25,* 825. 4'
- ⁴⁸ R. Ramaraj, A. Kira, and M. Kaneko, *Chem. Lett.*. 1987, 261.
- "' &. Ramaraj, A. Kira. and M. Kaneko, *J. Chem. Soc.. Chem. Conmun.,* 1986, 1707.
- '(I H. Hijs. *hl.* Crur. J. Fripiat, and H. \'an Damme. *J. Chem. Soc.. Clirm. Commun.,* 1981, 1026.
- ⁵¹ J. Kiwi and M. Grätzel, *Chem. Phys. Lett.*, 1981, **78**, 241.
- *⁵²***A.** Mills and A. Cook. *J. Clicw. Soc.. Fmxrln,. Trans. I,* 1988. **84,** 1691.
- **z3** R. *C.* Weast in 'CRC Handbook of Chemistry and Physics,' CRC Press, Boca Raton. Florida, 61st edn.. 1980. D155.

Heterogeneous Redox Catalysts for Oxygen and Chlorine Evolution

		Standard Redox Potential ⁵³ $(V \, vs. \, NHE)$		
	Electrochemical	$(Initial \longrightarrow Find)$	$\Delta E(O_2)$	$\Delta E(Cl_2)$
<i>Oxidant</i>	Reversibility +	Oxidation State	(V)	(V)
$S_2O_8^2$ -	Irrev.	2.01	0.78	0.65
		$(+7 \rightarrow +6)$		
Ce^{IV} ions		1.70	0.47	$0.34*$
$(2 \text{ mol dm}^{-3}$ HClO ₄)		$(+4 \longrightarrow +3)$		
MnO ₄	Irrev.	1.68	0.45	$0.32*$
		$(+7 \longrightarrow +4)$		
IO ₄	Rev.	1.65	0.42	0.29
		$(+7 \rightarrow +5)$		
PbO ₂		1.46	0.23	$0.10*$
		$(+4 \longrightarrow +2)$		
ClO ₃	M. rev.	1.45	0.22	0.09
		$(+5 \longrightarrow -1)$		
Ce^{IV} ions	Rev.	1.45	0.22	0.09
$(0.5 \text{ mol dm}^{-3} \text{ H}_2 \text{SO}_4)$		$(+4 \longrightarrow +3)$		
Cl ₂	M. rev.	1.36	0.13	$\mathbf{0}$
		$(0 \longrightarrow -1)$		
BrO ₃	Rev.	1.44	0.21	0.08
		$(+5 \longrightarrow -1)$		
$Cr_2O_7^{2-}$	Irrev.	1.33	0.10	-0.03
		$(+6 - +3)$		
$Ru(bpy)$ ³⁺	Rev.	1.27	0.04	-0.09
		$(+3 \longrightarrow +2)$		
$T1^3$ ⁺	Rev.	1.25	0.02	-0.11
		$(+3 \longrightarrow +1)$		
MnO ₂		1.21	-0.02	$-0.15*$
		$(+4 \longrightarrow +2)$		
IO_{3}^{-}	M. rev.	1.09	-0.14	-0.27
		$(+5 \longrightarrow -1)$		
$Fe(bpy)33+$	Rev.	0.98	-0.25	-0.38
		$(+3 \longrightarrow +2)$		

Table 3 A list of oxidants and their ΔE values for O_2 or Cl_2 evolution

* Mixtures of the oxidant and Cl^- are kinetically unstable. \dagger On Pt electrodes (Rev. = reversible: Irrev. = irreversible; M. Rev. = moderately reversible)²

Cl⁻ ions) such oxidants do not generate O_2 (or Cl₂) at a measurable rate and the introduction of a redox catalyst does not speed up the reaction. At pH 0 all the oxidants listed in Table 3 are stable in water and in brine, although in the latter there are a few notable exceptions such as PbO_2 , MnO_2 , and Ce^{IV} ions (2 mol dm^{-3} HClO₄).

In order to test a new material for O_2 or Cl_2 catalytic activity the oxidant must be stable, cheap, and simple *(i.e.* preferably involve the transfer of only one electron). In addition, from Table 1, it would appear that an appropriate oxidant must be electrochemically reversible at the redox catalyst. From Table 2 it is

Property Redox potential ^a	Ce ^{IV} 1.44	$Ru(bpy)_{3}^{3+}$ 1.27	Comments Ce^{IV} ions are able to oxidize water to O_2 and Cl^- to Cl_2 whereas $Ru(bpy)_{3}^{3+}$ ions are only able to oxidize water to O_2 . For Ru(bpy) ³⁺ , at pH 0, the overpotential for the oxidation of water to O_2 is insufficient to drive the reaction.
Price	Cheap	Expensive	The ruthenium species is usually purchased or prepared in its stable 2^+ form.
Preparation required	None	Some	Analytical volumetric solutions of Ce ^{IV} ions in $H2SO4$ may be readily purchased, whereas $Ru(bpy)_{3}^{3+}$ must be generated chemically or photochemically from its stable 2^+ form.
Operational pH range	$<$ pH 1	$pH1 - 6$	Ce^{IV} ions undergo hydrolysis at pHs > 1. In contrast solutions of $Ru(bpy)_{3}^{3+}$ are relatively stable $(t_1 > 1.5 \text{ min})^{30.54.55}$ up to pH 6.
Long-term stability	Excellent	Poor	In 0.5 mol dm ⁻³ H_2SO_4 , solutions containing $CeIV$ ions can last years, whereas solutions containing $Ru(bpy)_{3}^{3+}$ ions will last only 1— 2 weeks. ^{30,51,52} At higher pHs the stability of the $Ru(bpy)_{3}^{3+}$ solutions decreases markedly.
Photochemical generation	N ₀	Yes	$Ru(bpy)33+$ can be readily photogenerated using sacrificial electron acceptors such as $Co(NH3)5Cl2+$ or $S2O82-$. This coupled with the interest in water splitting photochemical systems is largely responsible for the popularity of $Ru(bpy)_{3}^{3+}$ as a test oxidant.

Table 4 A comparison between Ce^{IV} and $Ru(bpy)_{3}^{3+}$ as the 'test' oxidant for determining the $O₂$ catalytic activity of a new material

 4 In 0.5 mol dm⁻³ H₂SO₄, *vs.* NHE.

clear that the most popular oxidants for testing O_2 catalytic activity are Ce^{IV} and $Ru(bpy)³⁺$ ions. This seems appropriate since they are both electrochemically reversible on a Pt electrode (see Table 3) and it seems probable that they would behave similarly on most conducting materials. **A** comparison between the two oxidants is provided in Table $4.54.55$ From Table 4 it is clear why Ce^{IV} ions are the most commonly used oxidant for testing a new material for O_2 or Cl_2 activity. It is worth noting also the general finding⁵ that any material identified as a good O_2 catalyst using Ce^{IV} ions as the 'test' oxidant, appears also to be a good O_2 catalyst when used at higher pHs with, say, Ru(bpy) 3^+ . Typically, a Ce^{IV} 'test' system comprises a solution of Ce^{IV} ions $(3.6 \times 10^{-3} \text{ mol dm}^{-3})$ in 0.5 mol dm⁻³ H_2SO_4 and a catalyst concentration of *ca*. 0.1 g dm⁻³.

3 Ruthenium Dioxide Hydrate

A. O₂ Catalysis.—From Table 2 it is apparent that ruthenium dioxide hydrate is

⁵⁴ C. Creutz and N. Sutin, *Proc. Natl. Acad. Sci. U.S.A.*, 1975, **72**, 2858.
⁵⁵ P. K. Ghosh, B. S. Brunschwig, M. Chou, C. Creutz, and N. Sutin, *J. Am. Chem. Soc.*, 1984, 106, 4772.

one of the most popular O_2 catalysts. However, extensive and detailed research has now established $11-15$ that there are two important and very different types of this hydrate: the first we shall refer to as RuO_2 . xH_2O and the second as $RuO₂·yH₂O[*]$. $RuO₂·xH₂O$ is highly hydrated ($\%$ H₂O content $\geq 24\%$) and may be purchased from suppliers such as: Johnson Matthey, Aldrich, Strem, and Englehard or prepared *via* the alkaline hydrolysis of an aerated aqueous solution of RuCl₃ mH_2O . This form of ruthenium dioxide hydrate is *not* a good O_2 catalyst.¹¹⁻¹⁴ Indeed, in the presence of an excess of Ce^{iv} ions in 0.5 mol dm⁻³ H₂SO₄ it is completely oxidized to $RuO₄$ with the concomitant generation of $O₂$. Equations describing these two simultaneous reactions were found to be as follows: ¹⁴
 $4Ce^{IV} + RuO_2 \cdot xH_2O + 2H_2O \longrightarrow 4Ce^{III} + RuO_4 + xH_2O + 4H^+$ (7a)

$$
4Ce^{IV} + RuO_2 \cdot xH_2O + 2H_2O \longrightarrow 4Ce^{III} + RuO_4 + xH_2O + 4H^+ \qquad (7a)
$$

and

$$
4zCe^{IV} + 2zH_2O \longrightarrow 4zCe^{III} + 4zH^+ + zO_2
$$
 (7b)

where $z \approx 0.26$.

In our study of the anodic corrosion of $RuO₂$.xH₂O by Ce^{IV} ions. *i.e.* reaction 7, initially we believed that the source of the water oxidized in reaction 7b originated from the hydrate itself rather than the solvent. However, the results of a more recent study carried out by our group,⁵⁶ using O^{18} -labelled water in the solvent and mass spectrometry for gas analysis, indicate that the O_2 generated in reaction 7b originates from the solvent. In this latter work we were also able to confirm that the RuO₄ also generated in the corrosion of $RuO₂·xH₂O$ gains two 0 atoms from the solvent, as indicated in equation 7a.

If the $RuO₂·xH₂O$ sample is annealed above ambient temperature in air for 5 h and then tested for O_2 catalytic activity, it undergoes less corrosion and behaves more like an O_2 catalyst than untreated $RuO_2 \cdot xH_2O$.¹⁵ Figure 2 illustrates the measured $\frac{6}{6}$ corrosion and $\frac{6}{6}$ O₂ yields when samples of $RuO₂·xH₂O$ which had been baked-out at different temperatures were injected into a Ce^{IV} test solution. The $\frac{6}{6}$ corrosion was determined from the amount of $RuO₄$ generated during the reaction and chemically trapped out as perruthenate using a solution of sodium hypochlorite incorporated in a flow system.¹⁶ When measured in this way the highest $\%$ corrosion of ruthenium dioxide hydrate to $RuO₄$ was found to be *ca.* 86% and not 100% as might be expected. However, the $\%$ corrosion value of 86% represents a minimum estimate of the real value, since some of the $RuO₄$ generated reacted with the glassware and any exposed rubber tubing before reaching the chemical trap, as evidenced by the blackening of both. Other experiments with $RuO₄$ alone showed that the maximum collection efficiency of the hypochlorite trap flow system was 86% indicating that a recorded $\%$ corrosion value of 86% for a ruthernium(1v) oxide powder actually indicates 100% corrosion of the powder. The $\%$ O₂ yield was determined using an O_2 electrode incorporated at the end of the same flow system.¹⁵

⁵⁶ A. Mills, R. Mason, and D. Milton. *J. Less-Common Metals*, accepted for publication.

Figure 2 $\%$ O₂ yield (\bullet) and $\%$ corrosion (\circ): observed on injecting samples (7.5 mg in 7.5 cm³ of 0.5 mol dm⁻³ H₂SO₄) of RuO₂. xH_2O , baked out at different temperatures for 5 h, into 100 cm³ of a H₂SO₄ soluton (0.5 mol dm⁻³) containing Ce^W ions (3.6 \times 10⁻³ mol dm⁻³) A. \triangle , commercial RuO₂.xH₂O (usually dried by the manufacturer at 50 °C; \bullet , \odot bakedout samples of RuO_2 ·xH₂O (\overline{T} = 298 K)

From the results illustrated in Figure 2 it is clear that samples of $RuO₂·xH₂O$ baked out at temperatures ≥ 144 °C are not only stable towards corrosion but also active as O_2 catalysts, *i.e.* they catalyse quantitatively the reaction

$$
4Ce^{IV} + 2H_2O \longrightarrow 4Ce^{III} + 4H^+ + O_2 \tag{8}
$$

However, although samples of $RuO₂·xH₂O$ baked out at temperatures $\ge 144^{\circ}C$ are stable towards corrosion, it also appears that their O_2 catalytic activities decrease with increasing annealing temperature, as illustrated in Figure 3. Further work has estabished 15 that this drop in activity with increasing annealing temperature is primarily due to a decrease in specific surface area of the sample which, in turn, is due to the processes of sintering and crystallization. Indeed, anhydrous, highly crystalline $RuO₂$ appears inactive as a catalyst,^{12,15} due to its very low specific surface area, typically ≤ 5 m² gm⁻¹.

From the above work it appears that the optimum form of thermally activated ruthenium dioxide hydrate for O_2 catalysis is a sample of $RuO_2 \cdot xH_2O$ baked out at ca. 144 °C for 5 h in air. Throughout this paper we shall refer to this particular catalyst as $RuO_2 \cdot vH_2O^*$. To date this material appears to be the most active, stable heterogeneous O_2 catalyst developed. Table 5 provides a list of oxidants which are able to oxidize water in the presence of $RuO_2 \cdot rH_2O^*$ and the observed O_2 yields. Thermal activation of Ru O_2 ·xH₂O to Ru O_2 ·vH₂O* appears to be independent of the atmosphere under which the samples are annealed, i.e. an annealing environment of N_2 or O_2 does appear not to effect the O_2 catalytic activity or corrodibility of the final, activated sample of ruthenium dioxide

Figure 3 Absorbance vs. time plots, recorded using a 1 cm cell $(\lambda = 430 \text{ nm})$, showing the decay of Ce^{tV} ions (ca. 3.5 × 10⁻³ mol dm⁻³) after injection (at t = 0) of 90 mm³ of 0.1 mol
dm⁻³ Ce^{tV} soluton into stirred dispersions of ca. 175 µg of RuO₂·xH₂O in 2.5 cm³ of 0.5 mol dm⁻³ H₂SO₄, baked-out at different temperatures. The baking temperatures of the
RuO₂-xH₂O samples were: (a) 140, (b) 250, (c) 400, (d) 550, (e) 700, (f) 900 °C and (g) no sample $(T = 298 \text{ K})$

Table 5 $\%$ O₂ yield for a variety of oxidizing agents using RuO_2 -yH₂O* as the redox catalyst (T = 298 K)

	$Initial \longrightarrow Find$		
Oxidizing Agent	Oxidation State	\degree O ₂ Yield	Comments
Ce^{IV}	$+4 \longrightarrow +3$	$97 - 102$	A rapid reaction, over in less
$(0.5 \text{ mol dm}^{-3} \text{ H}_2 \text{SO}_4)$			than 10 min
MnO ₄	$+7 \longrightarrow +4$	99	As for Ce^{IV}
IO ₄	$+7 \longrightarrow +5$	104	As for Ce^{IV}
BrO ₃	$+5 \longrightarrow -1$	84	A much slower reaction, complete
			after $ca. 17 h$
PbO ₂	$+4 \longrightarrow +2$	44	A very slow and incomplete reac-
			tion
MnO ₂	$+4 \longrightarrow +2$	53	As for $PbO2$
CIO ₁	$+5 \longrightarrow -1$	3	Very little, if any, reaction
Cr_2O_7	$+6 \longrightarrow +3$	θ	As for ClO_3^-
$Ru(bpy)_{3}^{3+}$	$+3 \longrightarrow +2$	$\mathbf 0$	As for ClO_2^-
Ce^{IV}/Ce^{III} (1:10)	$+4 \longrightarrow +3$	92	A very slow reaction, complete
$(0.5 \text{ mol dm}^{-3} \text{ H}_2 \text{SO}_4)$			after ca. 30 h

hydrate. As you might expect, in contrast to $RuO_2 \cdot xH_2O$, $RuO_2 \cdot yH_2O^*$ is much less hydrated (% H_2O content $\leq 12\%$). The relationship between the % H_2O content of a sample of ruthenium dioxide hydrate and its corrodibility, as measured by a Ce^{IV} test system, is illustrated in Figure 4.

% H₂O Content

Figure 4 $\%$ Corrosion vs. $\%$ H₂O content for samples of highly hydrated RuO₂ xH₂O, not heat-treated and heat-treated at different temperatures over the range 60—400 °C. The samples can be divided into three distinct classes: (A) non-corrodible; $\frac{9}{6}$ H₂O content $\leq 10\frac{9}{6}$, (*B*) only partly corrodible, with the $\frac{\sigma}{6}$ corrosion increasing with increasing $\%$ H₂O content $\leq 10\%$,
24% > $\%$ H₂O content > 10% and (*C*) completely corrodible: $\%$ H₂O content > 24% (*T* = 298 K)

Interestingly, samples of ruthenium dioxide hydrate from Alfa and Fluka have been found not to be fully hydrated and typically possess a $\%$ H₂O content of *ca*. 18%. These materials exhibit a much greater resistance towards corrosion $\binom{9}{6}$ corrosion 8—9%) and a high catalytic activity (O₂ yield = 92%). This discrepancy between different commercial samples of ruthenium dioxide hydrate may even extend to different batches from the same supplier and is almost certainly the cause for the marked discrepancies in $O₂$ catalytic activity reported for ruthenium dioxide hydrate over the years.⁷⁻¹⁵ As might be expected, such anomalous samples of $RuO_2 \cdot xH_2O$ are readily converted into $RuO_2 \cdot rH_2O^*$ by annealing in air for 5 h at 144 °C.

It appears likely that anodic corrosion of any sample of ruthenium dioxide hydrate occurs at kink or other surface-defect sites and that such sites would be associated with a greater number of co-ordinated hydroxyl groups than at other surface sites. If this were the case it would help rationalize why the $\%$ H₂O content of a sample of ruthenium dioxide hydrate provides some measure of its corrodibility (see Figure 4). By analogy with samples of hydrated $TiO₂$ it appears likely that heat treatment of RuO_2 . xH_2O brings about the loss of water from the samples via a 'condensation' reaction between the two hydroxyl groups on adjacent Ru surface atoms with the formation of a Ru-O-Ru bond.^{56.57} This

⁵⁷ M. Primet, P. Pichat, and M.-V. Mathieu, J. Phys. Chem., 1971, 75, 1261.

process would lead to a less defective surface which might be expected to be less prone to corrosion.

B. CI_2 Catalysis. $-A$ convenient test system for a possible CI_2 catalyst is provided by a H_2SO_4 solution (0.5 mol dm⁻³) containing Ce^{IV} and chloride ions. As indicated in Table 3, this system is thermodynamically unstable, $\Delta E > 0$ V, but, in practice, it is found to be kinetically stable. A 'good' $Cl₂$ catalyst would mediate the oxidation of the Cl^- ions to Cl_2 by the Ce^{IV} ions, *i.e.*

$$
2Ce^{IV} + 2Cl^- \longrightarrow 2Ce^{III} + Cl_2
$$
\n(9)

This test system was first suggested in 1981 by Kiwi and Grätzel⁵¹ who also reported that $RuO₂·xH₂O$, supplied by Alfa, was able to catalyse reaction 9 as well as reaction 8 when chloride ions were added. In a typical experiment, the concentration of Ce^{IV} ions and catalyst were 10^{-3} mol dm⁻³ and 2×10^{-3} mol dm^{-3} (ca. 0.34 g dm⁻³), respectively. At a Cl⁻ concentration of 10^{-3} mol dm⁻³ the reaction appeared to be 6% efficient and this could be increased to *cd*. 17[%] by increasing the Cl⁻ concentration to 1 mol dm⁻³. The low efficiency of $Cl₂$ evolution, observed even at high Cl⁻ concentrations was attributed to competition between reactions 8 and 9.

Initially, it seems unlikely that $RuO \rightarrow H_2O$ would be able to mediate reaction 9 as claimed by Kiwi and Grätzel. However, with hindsight, this is not so unreasonable since the $RuO₂·xH₂O$ sample used by these workers was supplied by Alfa and therefore was quite likely partially dehydrated. **As** noted previously, such anomalous forms of $RuO₂$. $xH₂O$ are known to exhibit some O₂ catalyst activity and to have some stability against anodic corrosion.¹⁵ Interestingly, if some RuO₄ were generated *via* reaction 7 it would be expected⁵⁸ to react with the Cl^- ions present, particularly if the Cl^- concentration was high, to form a mixture of water soluble ruthenium(IV) oxochlorides⁵⁸ and, presumably, Cl₂. If highly hydrated $RuO₂·vH₂O$ was used as the 'Cl₂ catalyst' in his system then Ru04 may not only be generated *rici* reaction 7, but also *cici* reaction 10.

$$
RuO_2 \cdot xH_2O + 2H_2O + 2Cl_2 \longrightarrow RuO_4 + 4H^+ + 4Cl^- + xH_2O \qquad (10)
$$

Indeed, the use of chlorine water to generate RuO_4 from $RuO_2 \cdot xH_2O$ is a well established procedure.⁵⁸

Thermally activated ruthenium dioxide hydrate ($RuO₂$ + $H₂O[*]$) is not corroded readily by $Cl₂$ and we have established that it is able to mediate reaction 9 with 98% efficiency at Cl⁻ concentrations > 0.2 mol dm⁻³. On reducing the Cl⁻ concentration below this 'threshold' value the $Cl₂$ and $O₂$ yields decrease (98 to 0%) and increase (0 to 95%), respectively, as illustrated in Figure 5. These trends

⁵⁸ E. A. Seddon and K. R. Seddon. 'The Chemistry of Ruthenium.' Elsevier. Amsterdam, 1984, Chapters 3 and 5.

Figure 5 $\%$ O₂ and $\%$ Cl₂ yields, produced via reactions 8 and 9, determined as a function of Cl^2 concentration. These results were obtained by injecting 5×10^{-4} mol of Ce^{fV} ions into 100 cm³ H₂SO₄ solution (0.5 mol dm⁻³) containing 10 mg of RuO_2 ·yH₂O* and a variety of different Cl⁻ ion concentrations. Any Cl₂ generated was swept out by a continuously flowing N_2 stream and subsequently determined using a 'tri-iodide trap' (T = 298 K)

"Determined using 10 mg of redox catalyst in a H_2SO_4 solution containing Ce^{IV} ions (100 cm³; 3.6×10^{-3} mol dm⁻³) and (for \degree ₀ Cl₂ yields only) Cl⁻ ions (1 mol dm⁻³); $T = 298$ K.

in $\frac{6}{10}$ Cl₂ and $\frac{6}{10}$ O₂ as a function of [Cl⁻] arise because reactions 8 and 9 are competitive and, as we shall see, the kinetics of reaction 9 are a function of the Cl^- concentration.

Using a test system comprising Ce^{IV} ions (100 cm³, 3.6×10^{-3} mol dm⁻³) in 0.5 mol dm⁻³ H_2SO_4 and Cl⁻ ions (1 mol dm⁻³), 10 mg samples of a variety of different materials were tested for catalytic activity. The results of this work are summarized in Table 6 and it is interesting to note that all of the 'good' $Cl₂$ catalysts are also recognized good conductors. Given this it may at first appear surprising to note that both Pt and Au did not generate stoicheiometric vields of Cl₂. However, this is most likely due to rapid oxidation of the Pt and Au, by

some, or all (as appears to be the case for **Au),** of the chlorine generated. From Table 6, it also appears that $RuO₂·xH₂O$ can, after all, act as an efficient Cl₂ catalyst; no evidence was found to suggest that RuO₄ was generated *via* reaction 7.

It is worth noting at this point that the $\%$ Cl₂ yields for all the catalysts, including $RuO₂·xH₂O$, were determined by continuously sweeping out any Cl₂ generated in the reaction vessel using a stream of N_2 and subsequently passing the N_2 stream through a 'trap' solution containing a high concentration of $I^$ ions. The amount of Cl_2 generated by the catalyst in the test system was then determined *via* the amount of tri-iodide found in the 'trap'.^{52,59} As a consequence of this procedure, the Cl_2 concentration in the reaction vessel was always very low, thus making unlikely reaction 10 or, for that matter, any slow corrosion reaction involving the test 'redox catalyst' and $Cl₂$.

4 The Electrochemical Model of Redox Catalysis 18+1

Before examining the observed kinetics for O_2 and Cl_2 redox catalysis mediated by $RuO₂·yH₂O[*]$, it is worth considering the likely implications of the electrochemical model of heterogeneous redox catalysis to either reaction. Both reactions 8 and 9 can be considered to be examples of a reversible couple (the reduction of Ce^{IV} ions to Ce^{III} ions) coupled to a comparatively highly irreversible reaction *(i.e.* the oxidation of water to O_2 , or Cl⁻ to Cl₂). For simplicity let us consider the kinetics of catalysis for this situation in terms of the general redox reaction **1,** where Ox_1/Red_1 is the reversible couple used to oxidize the irreversible couple Red_2/Ox_2 .

If the reduction of Ox_1 is electrochemically reversible at the redox catalyst then the cathodic current, i_c , will be related to the applied potential, E_{ap} , by the equation

$$
E_{\rm ap} = E_1' + (RT/n_1F) \ln \{(i_{\rm c} - i_{1,\rm c})/(i_{1,\rm a} - i_{\rm c})\} \tag{11}
$$

where E_1 is the formal redox potential for the Ox_1/Red_1 couple and $i_{1,c}$ and $i_{1,a}$ are the limiting cathodic and anodic currents which reflect the maximum rates at which Ox_1 and Red₁, respectively, can be brought to the surface. Equation 11 assumes that mass transfer coefficients for Ox_1 and Red₁ are approximately the same and we shall refer to the value of this coefficient as k_d . The limiting cathodic and anodic currents can be calculated using the following equations

$$
i_{1,c} = -n_1 F k_d A_{\text{cat}} [\text{Ox}_1] \tag{12}
$$

and,

$$
i_{1,a} = n_1 F k_d A_{\text{cal}} [\text{Red}_1] \tag{13}
$$

where A_{cat} is the effective catalyst surface area and $[Ox_1]$, $[Red_1]$ the concentrations of Ox_1 and Red₁, respectively.

 59 A. Mills and A. Cook, *Analyst (London)*, 1987, 112, 1289.

If the oxidation of Red_2 is electrochemically irreversible at the redox catalyst then the anodic current, i_a , will be related to E_{ab} by the equation

$$
i_a = i_{0,2} \exp{(1 - \alpha_2)z_2} F \eta / RT
$$
 (14)

provided the overpotential, q, is sufficiently large and positive and that the current-voltage curve lies in the Tafel region. In equation $14 i_{0,2}$ is the exchange current, x_2 is the cathodic transfer coefficient, z_2 is the number of electrons transferred in the rate determining step and, η is the difference between E_{ap} and the equilibrium potential for the Ox_2/Red_2 couple, E_2 .

Assuming the Wagner-Traud additivity principle applies,² when both couples are present the redox catalyst particles will adopt a mixture potential (E_{mix}) at which the net current of the system is zero, *i.0.*

$$
i_{\rm a} = -i_{\rm c} = i_{\rm mix} \tag{15}
$$

Under these conditions equation 11 may be written as

$$
-i_{\rm c} = \frac{n_1 k_d F A_{\rm cal} ([\rm Ox_1] - [\rm Red_1] \exp \{F n_1 (E_{\rm mix} - E_1)/RT\})}{1 + \exp \{F n_1 (E_{\rm mix} - E_1)/RT\}}
$$
(16)

and equation 14 may be rewritten as

$$
i_{\rm a} = i_{0,2} \exp \left\{ (1 - \alpha_2) z_2 F(E_{\rm mix} - E_2) / RT \right\} \tag{17}
$$

A. Diffusion-controlled Kinetics-Diffusion-controlled kinetics will be observed when the mixture potential lies in the plateau region of the cathodic currentvoltage curve for the Ox_1/Red_1 redox couple, as illustrated in Figure 6. The rate of reduction of Ox_1 will be proportional to i_{mix} which, in turn, will be numerically equal to $i_{1,c}$. The relationship between $i_{1,c}$ and $[Ox_1]$ is given by equation 12, where k_d is D_{0x1}/δ . D_{0x1} is the trace diffusion coefficient of Ox_1 in the supporting electrolyte and δ is the diffusion layer thickness. This latter parameter is a function of the hydrodynamic flow conditions around the redox catalyst and will be constant under fixed stirring conditions. A useful indication that the kinetics are diffusion-controlled is if the rate of disappearance of $[Ox_1]$ is first order with respect to $[Ox_1]$.

From equations 15-17 diffusion-controlled kinetics will be most likely to occur if E_{mix} is near to E_2 and well away from E_1 . This situation will be favoured if: (a) the equilibrium potentials of the two couples are well separated, (b) $i_{0,2}$ is large (although reaction 3 must still be irreversible), (c) there is a low concentration of Ox_1 and a high $[Ox_1]/[Red_1]$ ratio, and (d) the concentration $Red₂$ is high.

B. Partly Diffusion-controlled Kinetics.--This type of kinetics will be observed when E_{mix} is typically 5--75 mV less than E_1 , since under such conditions i_{mix} will be $\langle 0.9 \times i_{1,c} \rangle$. The rate of reduction of Ox₁ under such conditions will be

Figure 6 Schematic illustration of the current voltage curves for the reversible Ox_1/Red_1 couple (cathodic reaction, curve a) and the irreversible Ox_2/Red_2 couple (anodic reaction, curve b), when there is a large difference in equilibrium potentials and, as a result, E_{mix} lies in the plateau region of curve a

described by equations 15–17. A schematic illustration of this situation is given in Figure 7. A useful indication of this type of kinetics is if the rate of reduction of Ox_1 is *not* simply first order with respect to $[Ox_1]$ and decreases as [Red₁] is increased. Such kinetics will often be expected if E_2 is close to E_1 .

5 The Kinetics of O_2 and Cl₂ Catalysis

Despite the number and variety of reported examples of O_2 catalysts (see Table 2) there has been little attempt to study the kinetics of O_2 catalysis in any real detail, until the recent advent of a reproducible O_2 catalyst, ^{13,15} in the form of $RuO₂·yH₂O[*]$. The same is also true for Cl₂ catalysts. One reason for this may have been the notorious irreproducibility^{7 15} of such catalysts before the introduction of $RuO_2 \cdot \gamma H_2O^*$. Another unredeeming feature of such work, which makes it initially appear unattractive and possibly complex, is the quite unusual situation of attempting accurate rate measurements of, say, the disappearance of the oxidizing agent in a dispersion of the catalyst. In practice, however, there are few difficulties, although care must be taken to thoroughly degrease all glassware prior to its use and it is useful to be able to disperse the catalyst using ultrasound.

We have recently carried out detailed studies of the kinetics of both reaction 8 and reaction 9 using RuO_2 . yH_2O^* powder as the redox catalyst and Ce^{IV} ions as the oxidant.^{16,19,52} A schematic diagram of the experimental arrangement used is illustrated in Figure 8. As indicated in Figure 8 the kinetics of either redox-

Figure 7 As in Figure 6, with the exception that the two current-voltage curves are not well separated and, consequently. E_{mix} lies in a region of potential in which the current is less than diffusion-controlled

Figure 8 Schematic illustration of the system used to monitor the absorbance due to Ce^{IV} ions vs time decay curves for both \tilde{O}_2 and $\tilde{C}l_2$ catalysis

catalysed reaction 8 or 9 were studied by monitoring spectrophotometrically the decrease in the concentration of Ce^{IV} ions as a function of time. In a typical experiment 175 µg of RuO_2 ·y H_2O^* were dispersed in a solution (2.5 cm³) containing 0.5 mol dm⁻³ H₂SO₄ (+2 mol dm⁻³ NaCl for Cl₂ catalysis) which was contained in a 1 cm quartz cell. This dispersion was stirred continuously at

1 000 r.p.m. After 30 min, 90 mm³ of a Ce^{IV} solution (usually 0.1 mol dm⁻³) were injected into the dispersion and the subsequent disappearance of the absorbance due to Ce^{IV} ions (initial concentration after mixing 0.0036 mol dm⁻³) was monitored spectrophotometrically at 430 nm $(\epsilon = 290 \text{ mol}^{-1} \text{ dm}^3 \text{ cm}^{-1})$ or, for low concentrations of Ce^{IV} ions, 320 nm $(\epsilon = 5.580 \text{ mol}^{-1} \text{ dm}^3 \text{ cm}^{-1})$.

A. O₂ Catalysis in H_2SO_4 **.**¹⁹—Using RuO_2 · vH_2O^* as the redox catalyst, the experimental system illustrated in Figure 8, and reaction conditions similar to those described in the previous paragraph, the kinetics of Ce^{IV} reduction were found not to be simple first order and the rate appeared to decrease with increasing Ce^{III} ion concentration. This inhibitory effect exhibited by Ce^{III} ions on the kinetics of reaction 8 was observed most clearly in a series of experiments in which 100 mm³ of a 0.1 mol dm⁻³ Ce^{IV} solution were injected into 2.8 cm³ of a 0.5 mol dm⁻³ H₂SO₄ solution containing different concentrations of Ce^{III} ions, but always a fresh catalyst dispersion; after mixing $(ca, 3 s)$ the initial Ce^{IV} ion concentration ($[Ce^{4+}]_0$) was 3.45 × 10⁻³ mol dm⁻³. Figure 9a illustrates the variation of $[Ce^{4+}]$ as a function of time for a number of different initial Ce^{IV}/Ce^{111} concentration ratios. As predicted by the electrochemical model this inhibitory effect of Ce^{III} ions becomes less pronounced as the initial $[Ce^{4+}$] is decreased. Thus for a $[Ce^{4+}]_0 = 3.45 \times 10^{-5}$ mol dm⁻³ the decay curves recorded for a series of different $[Ce^{4+}]_0/[Ce^{3+}]_0$ ratios were very similar, as illustrated in Figure 9b. Considering the results of this initial study in the light of our electrochemical model of the system it would appear that the kinetics of reaction 8 are very near to diffusion-controlled at low Ce^{IV} concentrations, *i.e.* $\leq 3.45 \times 10^{-5}$ mol dm⁻³, and partly diffusion-controlled at high Ce^{IV} concentrations, *i.e.* $\geq 3.45 \times 10^{-3}$ mol dm⁻³.

(i) *Kinetics at Low* Ce^{IV} *Concentrations.* A study of the kinetics of reaction 8 was carried out using an initial $[Ce^{4+}]$ and $[Ce^{3+}]$ of 3.45 \times 10⁻⁵ mol dm⁻³ and 0 mol dm⁻³, respectively.¹⁹ The decay of the injected Ce^{IV} ions obeyed first-order kinetics at least over the first half-life and provided a first-order diffusioncontrolled rate constant, k_m . As noted previously from equation 12 of the electrochemical model, for a diffusion-controlled reaction the rate and therefore k_m , should be first order with respect to $\lceil Ce^{4+} \rceil$. In addition, from the electrochemical model the observed first-order rate constant, k_m , should depend directly upon the catalyst concentration, since $k_m = k_d A_{\text{cat}}$ and [catalyst] $\propto A_{\text{cat}}$. In order to test this, k_m was determined as a function of \lceil catalyst \rceil over the range 0.02-0.2 g dm⁻³. A plot of log (k_m/s^{-1}) *vs.* $\log\{[\text{catalyst}]/(g \text{ dm}^{-3})\}$ produced a good straight line {number of points $(n) = 6$; correlation coefficient $(r) = 0.9981$ } with a gradient $(m) = 1.14 \pm 0.08$. The near unity value of the gradient appears to confirm the prediction made by the model.

In another set of experiments using these dilute Ce^{IV} solutions, k_m was determined as a function of temperature over the range 20--70 *"C.* An Arrhenius plot of the results gave a good straight line and an activation energy of 17.2 ± 0.1 kJ mol⁻¹. The experimentally determined value of the activation

Mills

Figure 9 Observed variation of $[Ce^{4+}]$ as a function of time in which: (a) the initial $[Ce^{4+}]$
= 3.45 × 10⁻³ mol dm⁻³ and the initial Ce^{IV}/Ce^{III} concentration ratios were (i) 1:0, (ii) 1:1, (iii)
1:2, (iv) 1:3, an

reaction compares very well with that expected 60.61 for a diffusion-controlled reaction, *i.e.* 15--19 kJ mol⁻¹, and provides further support for the suggestion that at concentrations of Ce^{IV} $\leq 3.45 \times 10^{-5}$ mol dm⁻³ the kinetics of reaction 8 are diffusion-controlled.

As noted above the first-order rate constant, k_m , is equal to k_dA_{cat} where k_d is its *heterogeneous* counterpart, the mass transfer coefficient. Since k_m is a measurable quantity and the surface area of the redox catalyst used in this study is also known $(87 \text{ m}^2 \text{ g}^{-1})$, determined using a BET technique), it follows that a value for k_d can be calculated. From the results of our kinetic study of reaction 8 at low Ce^{tv} concentrations k_d was estimated as 4.4×10^{-4} cm s⁻¹. We shall use this value of k_d later on in the article (see Section 5Aiii).

(ii) *Kinetics at High* Ce^{IV} *Concentrations*.¹⁹ The rate of reduction of Ce^{IV} ions *via* reaction 8 observed at high initial concentration of Ce^{IV} ions $(3.45 \times 10^{-3} \text{ mol})$ dm^{-3}) appeared to decrease as the initial concentration of Ce^{III} ions was increased, see Figure 9a. As suggested earlier, this trend is expected if the kinetics are partly diffusion-controlled and described by equations 15-17 of the electrochemical model.

For any decay trace the rate of reduction of the Ce^{IV} ions, at any time t, is $r(t)$ (units: mol cm⁻³ s⁻¹), where $r(t) = d\zeta_0 e^{4t} \frac{1}{dt} dt$. This rate is related directly to i_{mix} by the expression

$$
r(t) = i_{\text{mix}}/F \tag{18}
$$

Since we are dealing with a heterogeneous system it is more appropriate to discuss the kinetics in terms the rate of a chemical surface reaction $\{i.e. R_{mix}(t)\}\$ which has units of mol cm⁻² s⁻¹. This heterogeneous rate is related to i_{mix} and $r(t)$ as follows:

$$
R_{\text{mix}}(t) = i_{\text{mix}}/FA_{\text{cal}} = r(t)/A_{\text{cal}} \tag{19}
$$

In our work on the kinetics of reaction 8 both the initial concentrations of Ce^{IV} and Ce^{III} ions are known. Thus, by monitoring the disappearance of the Ce^{IV} ions as a function of time, we can obtain both $[Ce^{4+}]$, and $[Ce^{3+}]$, at any time, *t*. From $r(t)$, the derivative of the $[Ce^{4+}]$ *vs.* time curve at time *t* we can also determine $i_{\text{mix},t}$ and $R_{\text{mix}}(t)$, *via* equations 18 and 19. A knowledge of $R_{\text{mix}}(t)$ then allows us to calculate the mixture potential at time *t (i.e.* $E_{\text{mix},i}$) at the $RuO₂·yH₂O[*]$ microelectrode particles, using a modified and rearranged version of equation 17, *i.e.*

$$
E_{\text{mix},l} = E_{\text{Ce}} + RT/F \ln \{ (-k_{\text{d}}[\text{Ce}^{4+}]-R_{\text{mix}}(t)) / (\mathbf{R}_{\rightarrow x}(t) - k_{\text{d}}[\text{Ce}^{3+}]-1) \} \tag{20}
$$

provided k_d is known.

⁶⁰ F. Wilkinson, 'Chemical Kinetics and Reaction Mechanisms,' Van Nostrand Reinhold. London, 1981, **p.** 140.

⁶¹ J. W. Moore and R. G. Pearson, 'Kinetics and Mechanism, J. Wiley, New York, 1981, p. 239.

In the example of redox catalysis we are considering the redox couple Ox_2/Red_2 is really the O_2/H_2O couple and equation 14 can be rewritten as follows

$$
i_a = i_w \exp(2.303 \times \eta/b) \tag{21}
$$

where, i_w is the exchange current for the O_2/H_2O couple on the $RuO_2 \cdot \gamma H_2O^*$ powder particles, *h* is the Tafel slope and q is the difference between *Eap* and the equilibrium potential for the O_2/H_2O couple $(E_w$ is taken to be 1.23 V *vs.* NHE). It follows that a major prediction of this type of kinetics is that a plot of $E_{\text{mix},i}$ *vs.* $\log \{R_{\text{mix}}(t)\}\$ should produce a straight line of gradient *b* and intercept $-b \times \log(R_{\rm w})$, where

$$
R_{\rm w} = [i_{\rm w} \exp(-2.303 \times E_{\rm w}/b)]/FA_{\rm cat}
$$
 (22)

For each of the decay curves illustrated in Figure 9a we were able to calculate for a variety of different times, *t*, covering the span ($>$ 3 half-lives) of each of the decay curves, both $R_{mix}(t)$, using equation 19 and the derivative, $r(t)$, and $E_{mix,t}$, using equation 20 and a value for k_d of 4.4×10^{-4} cm s⁻¹. As predicted by the electrochemical model, for each decay curve a plot of $E_{\text{mix},l}$ *vs.* $\log \{R_{\text{mix}}(t)\}\$ produced a straight line with a common gradient and intercept; these plots are illustrated in Figure 10. A least squares analysis of the data illustrated in Figure 10, produced the following information: $n = 80$, $r = 0.9968$, $b = 0.0309 \pm 0.0005$ V/decade, $-b \times \log(R_{\rm w}) = 1.708 \pm 0.006$ V. From the values for the intercept and gradient the exchange current density, i_w/A_{cat} , (units: A cm⁻²) for the oxidation of water on the surface of the $RuO₂·yH₂O[*]$ powder particles can be calculated as *ca.* $(3.45 \pm 0.03) \times 10^{-11}$ A cm⁻², using equation 22. At mixture potentials < 1.36 V there was evidence to suggest that the Tafel slope *h,* and therefore possibly the mechanism, for water oxidation had changed. **As** a result, the current exchange density calculated above was only a formal quantity and the true value may well be considerably smaller.

The oxidation of water to oxygen at the electrode surface may occur *cia* the 'oxide pathway',62 i.e.

$$
S + H_2O \longrightarrow S-OH + H^+ + e^-
$$
 (23)

$$
+ H2O \longrightarrow S-OH + H+ + e-
$$
 (23)
2S-OH \longrightarrow S-O + S + H₂O (24)

$$
2O \longrightarrow S-OH + H^{+} + e^{-}
$$
\n
$$
OH \longrightarrow S-O + S + H_{2}O
$$
\n
$$
2S-O \longrightarrow 2S + O_{2}
$$
\n
$$
(25)
$$

where S is the surface active site. It can be shown that if reaction 23, 24, or 25 is the rate determining step then the Tafel slope will be 120, 30 or 15 mV, respectively. Thus, we can interpret our observed Tafel slope of 30.9 mV/decade in terms of the 'oxide pathway', where reaction 24 is the rate determining step.

[&]quot;J. O'M. **Rockris,** *J. Clwni. /'/i~,s.,* 1956. **24,** 817.

Figure 10 *Tafel plot of* $E_{mix,l}$ *(V vs. NHE) vs. log* $(R_{mix,l})$ *equiv. cm ² s⁻¹). <i>The data used to* $\frac{1}{2}$ *construct this plot were taken from Figure 9a curves* (i) \blacksquare , (ii) \blacktriangle , (iii) \heartsuit , and (iv) \bigcirc

Interestingly, a number of electrochemical studies of the oxidation of water to $O₂$ have been carried out using high defect hydrous ruthenium dioxide anodes.⁶³ a material which is likely to have similar electrochemical characteristics to $RuO₂·vH₂O[*]$. In most cases the Tafel slope was also found to be 30 mV/decade and, coupled with other findings, was invariably interpreted, as we have done, in terms of the oxide pathway, with reaction 24 as the rate determining step.^{64,65}

A series of $[Ce⁴⁺]$ decay curves were recorded for a variety of catalyst concentrations over the range 0.02-0.2 g dm⁻³. A plot of $E_{\text{mix},t}$ vs. log $\{r(t) \times V_s\}$, where V_s = the volume of solution in the reaction cell, was made for each of the decay curves and the resulting collection of straight lines is illustrated in Figure 11. Using the data in Figure 11 a plot of $\log \{r(t) \times V_s\}$ *vs.* \log [redox catalyst] was made for three different set potentials, *i.e.* 1.40, 1.38, and 1.36 V vs. NHE. The product was three, almost parallel, straight lines with a mean value for the gradient of *ca.* $1.25 + 0.05$. This finding supports the electrochemical model which predicts that $r(t)$ will depend directly upon A_{cat} and, therefore, directly upon [redox catalyst] (see equation 19).

The activation energy of water oxidation reaction was determined *via* a set of

⁶³ S. Trasatti and **W.** E. O'Cirady. *Atlr. Ek/roc,hern. E/cctrochmi. Etzg.* 198 1. **12.** 180, and references therein.

 64 G. Lodi, E. Sivieri, A. de Battisti, and S. Trasatti, *J. Appl. Electrochem.*, 1978, 8, 135.

[&]quot; **S.** Trasatti and G. Lodi. 'Electrodes of Conductive Metallic Oxides,' ed. **S.** Trasatti. Elsevier. Amsterdam, 1980, Chapter 10 and references therein.

Figure 11 *Tafel plot of E*_{mix.1}/(V vs. *NHE*) vs. log {r(t) × V_s /mol s⁻¹} for a series of different catalyst concentrations. From left to right the plots correspond to a redox catalyst concentration of: 21.8, 32.

experiments conducted over the temperature range $20-70$ °C using an initial Ce^{IV} concentration of 3.45 \times 10⁻³ mol dm⁻³, a [Ce⁴⁺]₀/[Ce³⁺]₀ ratio of 1:4 and a redox catalyst concentration of 0.08 g dm⁻³. The Ce^{IV} decay curves recorded at each temperature were analysed over three half-lives and used to generate a set of $E_{\text{mix},t}$ vs. log $\{R_{\text{mix}}(t)\}\$ data. At mixture potentials > 1.36 V vs. NHE all the Tafel plots of this data are straight lines with an approximately common slope *(ca.* 30.1 mv/decade). However, at $E_{\text{mix},l}$ < 1.36 V vs. NHE a deviation to a lower Tafel slope value is apparent, indicating, possibly, a change of mechanism at these low overpotentials. This can be rationalized in terms of the oxide pathway mechanism, since, as the potential on the $RuO₂yH₂O[*]$ particles falls, so will the surface coverage of S-0 species. Eventually a point may be reached when reaction 25 becomes rate limiting and, as a result, the Tafel slope will be expected to change to $15 \text{ mV/decade}.^{62,63}$

Arrhenius plots were constructed by taking the rate value from each Tafel plot at a series of fixed potentials, 1.40, 1.38, and 1.36 V *t's.* NHE, respectively. From the gradients of the three approximately parallel straight lines a mean activation energy for the oxidation of water to O_2 on the surface of the $RuO₂·yH₂O[*]$ particles was calculated to be 52 ± 8 kJ mol⁻¹. This value for the activation energy compares favourably with the value of 50.4 kJ mol⁻¹, determined previously by another group,⁶⁴ in a macroelectrode study of the oxidation of water using a hydrous ruthenium dioxide anode.

(iii) *Simulation of the Ce^{IV} Decay Curves.*^{18.19} The pertinence of the electrochemical model used here, its assumptions, mathematical description, and the accuracy of our analysis based upon the model are best assessed by the solution and integration of equations 20 and 21 in conjunction with our estimated values for the constants involved; these constants include: $R_w = 2.69 \times 10^{-16}$ equiv. cm^{-2} s⁻¹, $b = 30$ mV/decade (both calculated from the data in Figure 10, for E_{mix} values > 1.36 V *vs.* NHE) and $k_d = 4 \times 10^{-4}$ cm s⁻¹. Using Newton's method and the combination of equations of 20 and 21 it can be shown that for any known values of $[Ce^{4+}]_0$ and $[Ce^{3+}]_0$ the mixture potential on the particle can be determined, E_{mix} , which, in turn, can be used to calculate i_{mix} using equation $21¹⁸$ Provided the initial concentrations of Ce^{IV} and Ce^{III} ions are known, this routine coupled to a variable step version of Euler's method may be combined to regenerate any of the observed $[Ce^{4+}]$ vs. time decay curves and used to predict the shapes of decay traces under very different reaction conditions. **A** detailed description of the procedure has been given in a previous paper.¹⁸

Figures 12a and 12b illustrate reconstructed versions of the decay curves given in Figures 9a and 9b, respectively. The fit to the experimentally determined decay curves at $[Ce^{4+}]_0 = 3.45 \times 10^{-3}$ mol dm⁻³ is very good but at $[Ce^{4+}]_0 =$ 3.45×10^{-5} mol dm⁻³ the experimental curves are marginally, but consistently, faster than the simulated curves. There is evidence to suggest that this may be due to the non-steady state process of catalyst charging, which occurs when the Ce^{IV} ions and the catalyst are first mixed. It can be shown 17 that this process will only make a significant contribution to the observed decay of the $Ce^{i\bar{V}}$ ions when their concentration is very low, *i.e.* $\leq 3.45 \times 10^{-5}$ mol dm⁻³.

B. O₂ Catalysis in HClO₄.¹⁶-From our interpretation of the kinetics of reaction 8 using the electrochemical model it appears that in 0.5 mol dm⁻³ H_2SO_4 and high concentrations of Ce^{IV} ions the current-voltage curves are not well separated and the rate of reduction of Ce^{IV} ions is partly diffusion-controlled. However, at low concentrations of Ce^{IV} ions in the same acid medium the kinetics appear close to diffusion-controlled and this result suggests that if the separation between the equilibrium potentials of the Ce^{IV}/Ce^{III} and O_2/H_2O couples could be increased in some way, by $50-100$ mV say, then the kinetics at high Ce^{IV} concentrations should become wholly diffusion-controlled. Now, although the formal redox potential (which provides a measure of the equilibrium potential) of the Ce^{IV}/Ce^{III} couple is 1.44 V vs. NHE in 0.5 mol dm⁻³ H₂SO₄, it is 1.70 V vs. NHE in 2 mol dm⁻³ HClO₄. Thus an increased separation in equilibrium potentials can be achieved by carrying out the reaction in a medium containing 1 moldm⁻³ HClO₄ and little (or no) H_2SO_4 .

In practice it was found to be easier to work with an acid medium which was predominantly HClO₄, *i.e.* 1 mol dm⁻³ HClO₄ + 3.5 \times 10⁻² mol dm⁻³ H₂SO₄. In this medium the formal potential of the Ce^{IV}/Ce^{III} couple was measured as 1.58 V $vs.$ NHE, 140 mV more positive than that in 0.5 mol dm⁻³ $H₂SO₄$. As indicated by the results contained in Table 7, $RuO_2 \cdot \gamma H_2O^*$ is able to mediate the stoicheiometric oxidation of water to O_2 by Ce^{IV} ions in this predominantly HC104 medium and exhibits no evidence of anodic corrosion.

Mills

Figure 12 Digitally simulated curves for initial Ce^{IV} ion concentrations of (a) 3.45 \times 10⁻³ and (b) 3.45 \times 10⁻⁵ mol dm⁻³. These decay curves were reconstructed using equations 20 and 21 as outlined in Sect used in generating the observed decay curves illustrated in Figures 9a and 9b

Table 7 $\%$ O₂ yields and $\%$ corrosion for RuO_2 ·yH₂O* in different acid media (T = 298 K)

In one set of experiments the initial concentration of Ce^{IV} ions was systematically varied over the range 3.5×10^{-3} to 3.9×10^{-5} mol dm⁻³ and for each recorded decay trace case the first-order plot gave an excellent straight line $(r \geq 1)$ 0.9999)! From this work an average value for k_m was determined as 4.8×10^{-2} s^{-1} . Further kinetic studies established that k_m was proportional to the catalyst concentration and independent of the initial concentration of Ce^{III} ions. From the measured variation of k_m with temperature, in 1 mol dm⁻³ HClO₄ + 3.5 \times mol dm⁻³ H₂SO₄, the activation energy for reaction 8 was determined as 22 kJ mol⁻¹. All these results are as predicted by equation 12 of the electrochemical model and indicate that the reduction of Ce^{IV} ions *via* reaction 8 in 1 mol dm⁻³ $HClO_4 + 3.5 \times 10^{-2}$ mol dm⁻³ H_2SO_4 are diffusion-controlled.

C. Kinetics of CI_2 **Catalysis.**⁵² $-As$ noted earlier and illustrated in Figure 5, when $RuO₂·yH₂O[*]$ is used as the redox catalyst for reaction 9, the $\frac{9}{6}$ yield of Cl₂ evolved increases as the C1- ion concentration is increased. **At** C1- concentrations >0.2 mol dm⁻³ stoicheiometric amounts of Cl₂ are generated. Thus, in order to ensure that in our kinetic study the reduction of Ce^{IV} ions was due to reaction 9, rather than reaction 8, the concentration of Cl^- ions used was always 2 mol dm⁻³, unless stated otherwise.

The kinetics for the reduction of Ce^{IV} ions *cia* reaction 9 were studied as a function of initial Ce^{IV} concentration over the range $3.6 \times 10^{-3} - 3.6 \times 10^{-4}$ mol $dm⁻³$. In all cases, the observed decay curves, analysed over at least two half-lives, produced excellent straight lines $(r \ge 0.9997)$ when plotted out in the form In (ΔA) *vs. t.* These results indicate that the rate of reduction of Ce^{IV} ions in reaction 9 is first-order with respect to $\lceil Ce^{4+} \rceil$.

Further work on the kinetics of Ce^{IV} reduction established that the first-order rate constant, k_m , was independent of the initial concentration of Ce^{III} ions and directly dependent upon the redox catalyst concentration. In addition k_m was determined as a function of temperature and from the resulting Arrhenius plot of the data an activation energy of 27 ± 4 kJ mol⁻¹ was estimated for reaction 9. Taken as a whole the results of the kinetic study indicate that the reduction of Ce^{IV} ions is diffusion-controlled, although the experimentally determined value for the activation energy was slightly higher than might be expected for a diffusion-controlled reaction. 60.61

We have already noted (see section **5A)** that for reaction 8, in *0.5* mol dm-3 $H₂SO₄$, the kinetics of Ce^{IV} reduction are diffusion-controlled only when the initial Ce^{IV} concentration is low (*i.e.* $\leq 3.45 \pm 10^{-5}$ mol dm⁻³), despite the quite large separation between the standard redox potentials for the Ce^{IV}/Ce^{III} and

 O_2/H_2O redox couples, $\Delta E(O_2) = 220$ mV, see Table 3. As a result, it might at first appear unlikely that the kinetics for reaction 9 would be diffusion-controlled at high or low Ce^{IV} concentrations, as has been found, given that the reaction medium was also 0.5 mol dm⁻³ H_2SO_4 and therefore $\Delta E(Cl_2)$ was only +90 mV, *i.e.* 130 mV less than $\Delta E(O_2)$.

To rationalize our observations we must first consider the current-voltage curve for the oxidation of chloride to Cl_2 which, like that of water (see equation 21), will most likely be best described by a Tafel equation, ⁶⁶ *i.e.*

$$
i_{C1_2} = i_{0,C1} \exp(2.303 \times b^* \eta^*)
$$
 (26)

where $i_{0,\text{Cl}}$ is the exchange current for the Cl₂/Cl⁻ couple on the RuO₂-yH₂O^{*} powder particles, *h** is the Tafel slope, and q* is the difference between **Eap** and the equilibrium potential for the Cl_2/Cl^- couple (E_{Cl}^0) . In contrast with the electrochemical oxidation of water to O_2 , the oxidation of Cl⁻ to Cl₂ is classed as 'facile' for most electrodes, *i.e.* insensitive to the fine structure of the electrodes surface, and usually associated with an exchange current which is much greater than that for water, *e.g.* for RuO_2 electrodes ⁶⁵ $i_{0,\text{Cl}} \ge 10^{-4}$ A cm⁻² and $i_w \le$ A cm⁻². As indicated in section 4.1 a high exchange current density will favour diffusion-controlled kinetics since in this situation it is likely that E_{mix} will be close to E_{C1} and well removed from the equilibrium potential of the Ce^{IV}/Ce^{III} couple, E_{Ce} . Thus, in 0.5 mol dm⁻³ H₂SO₄, although the separation of the equilibrium potentials for the Ce^{IV}/Ce^{III} and Cl₂/Cl⁻ couples is much less than that for the Ce^{IV}/Ce^{III} and O_2/H_2O couples the observation of diffusion-controlled kinetics in the former system arises because $i_{0,\text{Cl}} \geq i_{\text{w}}$.

In our study of reaction 9 mediated by $RuO₂·yH₂O[*]$ we examined the effect on the rate of Ce^{IV} reduction as a function of Cl^- concentration. Interestingly, for low concentrations of Ce^{IV} ions, k_m was found to be independent of $Cl^$ concentration not only over the $\lbrack C \rbrack^r$ range 2-0.2 mol dm⁻³, where Cl₂ is the sole gaseous product, but also over the $\lceil C \rceil$ range 0.2-0.01 mol dm⁻³ where the $\%$ Cl₂ yield drops to 0% and the $\%$ O₂ yield rises to 100%. Thus it appears that the rate of reduction of Ce^{IV} ions is, in the case of water and Cl^- oxidation, *independent of the product* (i.e. O_2 *and* Cl_2) *being formed*. This is as predicted by the electrochemical model since we have established that under the reaction conditions employed both reactions 8 and 9 are diffusion-controlled and, therefore, the mixture current will be equal to $i_{1,c}$ (equation 12, where $\lceil Ox_1 \rceil$ = [Ce⁴⁺]) and independent of Cl⁻ concentration. As a result, the mixture current may be expressed as

$$
i_{\min} = i_{C1_2} + i_{O_2} = constant
$$
 (27)

If θ is the order that $i_{0,C}$ depends upon [Cl⁻], then we can expect the $\%$ Cl₂

⁶⁶ W. J. Albery. P. N. Bartlett, and A. J. McMahon in 'Photogeneration of Hydrogen.' ed. A. Harriman and M. A. West. Academic Press. London. 1982. **p.** 85.

Figure 13 Plot of $1/(26)$ Cl₂ yield) vs. $\lceil C \rceil^{-1}$ ² using the data illustrated in Figure 5

yield observed for a chloride concentration, $\lceil C \rceil$ to be given by the expression

$$
\% CI_{2} = 100K \{ [CI^{-}]^6 \exp(2.303b^* \eta^*) \} / \{ K [CI^{-}]^8 \exp(2.303b^* \eta^*) + i \exp(2.303b \eta) \} \quad (28)
$$

where K is a proportionality constant. This expression simplifies significantly if we make the assumption that the two Tafel slopes, *h** and *h,* are similar, *i.e.* $b^* \simeq b$. This assumption is not too unlikely given that we have established $b =$ 30 mV, and work on $RuO₂$ based electrodes has established⁶⁵ that b^* is usually also 30 mV. Using this assumption we can simplify equation 28 to

$$
1/\frac{6}{6} \text{Cl}_2 \text{ yield } = 0.01 + \{ Z \exp \left(b \left[\eta - \eta^* \right] \right) \} / \left[\text{Cl}^- \right]^{\theta} \tag{29}
$$

where, *Z* is $0.01 \times i_w/K$. The term $\lceil \eta - \eta^* \rceil$ is the difference between the equilibrium potentials of the two redox couples and, therefore, is a constant. **A** plot of the data illustrated in Figure 5 in the form of $1\frac{1}{2}$, Cl₂ yield *vs.* $\lceil C \rceil^{-2}$ is illustrated in Figure 13 and is a good straight line $(r = 0.9988)$. These results suggest that $i_{0,\text{Cl}}$ depends upon the square of the chloride ion concentration, *i.e.* $\theta = 2$.

The two mechanisms for the electrochemical oxidation of Cl^- to Cl_2 proposed most often are (a) the Volmer-Tafel mechanism with two steps: the Volmer reaction

$$
Cl^- \longrightarrow Cl_{ad} + e^-
$$
 (30)

and the Tafel reaction

$$
2Cl_{ad} \longrightarrow Cl_2 \tag{31}
$$

Polybrene = **1.5-dirnethyl-1.5-diazaundecamethylene** polymethobromide. hexadimethrine bromide. $SDS = sodium dodecyl sulphate. PVP = poly(vinyl pyridine)$

and (b) the Volmer-Heyrovsky mechanism, comprising the Volmer reaction 30 and the Heyrovsky reaction

$$
Cl^{-} + Cl_{ad} \longrightarrow Cl_{2} + e^{-} \tag{32}
$$

It can be calculated that in our work the current density flowing through the $RuO₂·vH₂O[*]$ particles is low, typically <0.025 mA cm⁻². In both the above reaction mechanisms the current would be expected to be second order with respect to the Cl^- concentration at low current densities if the second steps (reactions 31 and 32) were rata-determining. However, it should be noted that under such conditions the Tafel slopes for the two mechanisms would be different, *i.e.* 29.6 and 39.5 mV, respectively. As indicated previously, in most studies using $RuO₂$ -based macroelectrodes $b*$ is usually found ⁶⁶ to be 30 mV and interpreted in terms of the Volmer-Tafel mechanism. The results of our kinetic study of reaction 9 mediated by $RuO₂·vH₂O[*]$ appear entirely consistent with those predicted using an electrochemical model of redox catalysis, in which the oxidation of Cl⁻ to Cl₂ occurs *via* a Volmer-Tafel mechanism (reactions 30 and 31) with reaction 31 as the slowest of the two steps.

6 Colloidal Catalysts

In the search for faster-acting O_2 catalysts a number of research groups have reported the preparation of different colloids of hydrated ruthenium(1v) oxide and their application as O_2 catalysts (see Tables 2 and 8). To our knowledge, however, no colloidal **C12** catalysts have been reported. In general, most of the colloids of hydrated ruthenium(1v) oxide have been poorly characterized with the consequence that little is known about the degree of hydration of the ruthenium(1v) oxide. This is unfortunate given its proven relevance to corrosion stability and catalytic activity (see Figure 4).^{14,15}

Unlike powder dispersions, colloids of hydrated ruthenium(1v) oxide are usually optically clear. As a result, the kinetics of $O₂$ catalysis by such colloids are more easily studied using spectrophotometric techniques than those for

powders. However, surprisingly few detailed kinetic studies have been carried out. In addition, when colloids of hydrated ruthenium(1v) oxide have been used as $O₂$ catalysts there has often been no attempt to look for and quantify the degree of anodic corrosion undergone by the catalyst, despite its relevance in assessing catalyst stability. In the few examples in which the $\frac{9}{6}$ corrosion was measured, $2^{1.23}$ usually using Ce^{IV} ions as the oxidant, it was found to be significant, *i.e.* $27-40\%$. Indeed, for some colloids at least, it appears that even the mild oxidant $Ru(bpy)_{3}^{3+}$ is able to corrode hydrated ruthenium(1v) oxide to $RuO₄.^{23,26}$

Gratzel and his co-workers **39** have carried out a study of the kinetics of water oxidation by photochemically generated $Ru(bpy)\frac{3}{3}^+$ mediated by hydrated ruthenium(iv) oxide deposited onto colloidal particles of TiO₂. The kinetics were monitored spectrophotometrically, *ria* the decrease in absorbance due to the photogenerated $Ru(bpy)_{3}^{3+}$ species, and conductiometrically *via* the increase in solution conductance due to the generation of protons through the oxidation of water. The decay of the $Ru(bpy)_{3}^{3+}$ absorbance and the increase in conductivity were always found to occur concomitantly and with the correct stoicheiometry expected for the oxidation of water by $Ru(bpy)_{3}^{3+}$. These findings have been taken as direct evidence of an electrochemical mechanism for the oxidation of water, since it is expected from this model that the transfer of positive charge $Ru(bpy)_{3}^{3+}$ to the ruthenium(1v) oxide particle and the release of a proton from water would be simultaneous events. However, it appears that in these experiments the workers involved did not actually monitor the evolution of oxygen either as a function of time or at the end of reaction and this may be a significant omission (*vide inra*). The kinetics were fitted to a first order decay for $Ru(bpy)_{3}^{3+}$ and were near to diffusion-contolled. However, the effect of pH and catalyst concentration on the first-order rate constant were found not to be simple or easily rationalized.

Harriman and his co-workers²³ have employed both colloidal hydrated ruthenium(1v) oxide (prepared chemically and using gamma radiolysis) and manganese(IV) oxide (prepared using gamma radiolysis) as O_2 catalysts. In testing these catalysts, both photochemically generated $Ru(bpy)_{3}^{3+}$ and Ce^{IV} ions were used as the oxidant. Colloidal $MnO₂$ appeared to be a poor $O₂$ catalyst. They found that the hydrated ruthenium(rv) oxide colloids could catalyse the oxidation of water by $Ru(bpy)^{3+}_{3}$ or Ce^{IV} ions. However, with both oxidants, corrosion was observed and appeared particularly serious $\frac{6}{6}$ corrosion = 23.4– 40.2%) when Ce^{IV} ions were used. The kinetics of Ce^{IV} reduction *(via O₂)* catalysis, reaction 8, and corrosion, reaction 7) were briefly examined and the first-order rate constant appeared to depend directly upon the catalyst concentration.

Minero and his co-workers²² have used a colloid of hydrated ruthenium(iv) oxide protected by polybrene and a colloid of TiO_2/h ydrated ruthenium(1v) oxide as O_2 catalysts in the oxidation of water by Ce^{IV} and $Ru(bpy)$ ³⁺ ions. The colloid of TiO₂/hydrated ruthenium(1v) oxide is very similar to that used by Grätzel *et al.* in his flash conductiometric study. As in the latter kinetic study, Minero *et al.* used $Ru(bpy)_{3}^{3+}$ as the oxidant and found its decay to be first-order over three half-lives. Not surprisingly, the observed variation of the first-order rate constant (k_m) with pH and catalyst concentration was similar to that reported by Grätzel and his co-workers.³⁹ Interestingly, the variation of k_m with pH is very similar with and without the catalyst although the rate of the former reaction appears to be several hundred times greater.

It is appropriate at this point to identify a clear but often unstated danger associated with the interpretation of results arising from kinetic studies of reactions mediated by colloidal catalysts. Examples of such reactions will include: the oxidation of water to O_2 , the oxidation of brine to Cl_2 by strong oxidants such as Ce^{IV} or $Ru(bpy)_{3}^{3+}$ ions, and the reduction of water to hydrogen by strong reducing agents such as reduced methyl viologen. Clearly any mechanistic interpretation of the results following a kinetic study of such reactions may be badly flawed if it has not been proved that the appropriate gas is liberated in stoicheiometric proportions concomitant with the reduction of the oxidant, or oxidation of the reductant. Unfortunately, due to the limited response time of most gas analysis systems, it is often impossible to monitor the evolution of gas on the same time-scale as the colloidal kinetics. Under such circumstances the best that can be achieved is usually to ensure that gas evolution is quantitative under the conditions used in the kinetic study.

This problem with colloid kinetics has been well illustrated by the work of Albery and his co-workers in their investigation of the reduction of water by MV^+ . They have had to modify their initial mechanistic interpretation 66 of the kinetics of MV^+ oxidation upon discovering that a significant contribution to the decay of the MV^+ was provided by the reduction of oxide on the surface of their Pt colloidal catalysts rather than water reduction.⁶⁷ In the case of water oxidation, before any mechanistic interpretation can be made of the results of a kinetic study of O_2 catalysis the question must be asked: are the observed kinetics solely due to water oxidation, rather than the oxidation of (i) a trace impurity in the solvent, (ii) a species other than water associated with the colloid *(eg.* the supporting agent, or the catalyst itself) and/or (iii) the oxidant. Although the latter suggestion (iii) will not apply to Ce^{IV} ions, it is well known that $Ru(bpy)$ ⁺ ions are unstable at all pHs, and susceptible to, amongst other things,^{54,55} a 'deep disintegration' reaction ^{26,30} involving only a bpy ligand, *i.e.*

$$
C_{10}H_8N_2(bpy) + 20H_2O - 48e^- \longrightarrow 10CO_2 + N_2 + 48H^+ \tag{33}
$$

This reaction appears to be efficient at both high and low pHs. From equation 33 the complete deep disintegration of only 1 molecule of $Ru(bpy)_{3}^{3+}$ would require 150 molecules of $Ru(bpy)_{3}^{3+}$. Unfortunately, when using $Ru(bpy)_{3}^{3+}$ as the oxidant, conductance measurements may not clearly identify water oxidation since protons are also liberated by this well established 'deep disintegration' reaction.33

In a kinetic study Minero and his group²² used a colloid of hydrated ruthenium(1v) oxide supported by polybrene to mediate reaction 8 under

 67 W. J. Albery, P. N. Bartlett, and A. J. McMahon, *J. Electroanal. Chem.*, 1985, 182, 7.

Figure 14 Oxidation of water to O_2 by Ce^{IV} ions (4.5×10^{-5}) in 0.1 mol dm⁻³ H₂SO₄, mediated by a colloid of hydrated ruthenium(\mathbf{u}) oxide (0.001.25 g dm⁻³), supported by polybrene (0.000.63 g dm⁻³). The decay of the Ce^{IV} ions (curve a) was monitored spectrophotometrically using a stopped-flow (curve b) was monitored polarographically using an O_2 -MPD. The maximum change in current [$\Delta i(O_2$ -MPD)] observed corresponded to a 20% O_2 yield

conditions in which they believed 'dioxygen evolution should be the predominant pathway', *i.e.* $[Ce^{4+}] = 2-5 \times 10^{-5}$ mol dm⁻³, $[catalyst] = 0.0005-0.02$ g dm^{-3} , polybrene 0.015 g dm⁻³, and H_2SO_4 0.09 mol dm⁻³ at 25 °C. The decay of the Ce^{IV} ions was found to be first order and k_m was found to be directly dependent upon [catalyst]. We have since repeated this work²¹ and confirmed the kinetic observations. However, using an oxygen membrane polarographic detector (O_2 -MPD) to monitor any dissolved O_2 generated under the same conditions as the kinetic study we were *unable* to observe *any* O₂. We believe, therefore, that the kinetics reported by Minero *et al.22* and repeated by ourselves were not associated with the oxidation of water, but, rather the oxidation of the polybrene. In support of this latter suggestion, when the polybrene concentration was dropped from the constant value of 0.015 g dm⁻³, independent of the colloid concentration, to a value which was always approximately half the catalyst concentration, $\%$ O₂ yields of 20% were observed as illustrated in Figure 14. On scaling up by a factor of 70 the system used to generate the results in Figure 14, in order to determine the $\%$ corrosion, it was found that the $\%$ corrosion was only 27% and the % O₂ yield had increased to 73%! As yet the reasons for the change in $\%$ yield remain unclear and a cause for concern.

Acknowledgements. I thank the SERC and Royal Society for supporting this work and all my fellow collaborators for their invaluable help and advice.